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into the cone K+, therefore the matrix U (t, s) (to < a f t < m) transforms the cone 

K, into itself. The Lemma is proved. 

Theorem 1. Let a constant 5 exist under the conditions of the Lemma, such that 

& > max hf (Idi<n---l) (9) 

p 0, ha) >, 0 (to < t < “) (19) 
Then the following estimate holds : 

1 u (4 s)l < M&t-‘) 
where M is some number. 

(to<S<t<ca) (ii) 

Proof. We set uo= (1, &, . . ., A.,,%1 ). It is easy to see that Aus =(i, Qs (&), . . ., 
Q,(A,,)) (where Qu (A) are the polynomials (4)). It follows that the vector u. will lie 
within the cone K,,. Therefore we can introduce the following equivalent norm (so called 
u,-norm [Z)) in the space R” : , u ,,o = min a (- au, B % s o auo) 

We will analyze the function no (r) = &&8)_ From the inequality (10) it follows 

that: duo W 
~ > Q (9 uo @I dt (t > s > to) (W 

Let now -u. d o u d o uo. Then from (12) it follows that: 

and 
- ,h@-%o < “U (t, s) u < %?~~+%Lo (t > s > to) 

1 u (t, s) 1% < 8-s) (t > s > to) (13) 
Inequality (13) proves the inequality (11). The theorem is proved. 

Corollary. Let ho < 0 under the condition of Theorem 1, consequently solutions 
of (1) are exponentially stable. 

Theorem 2. Let the inequality (10) under the conditions of Theorem 1 be replaced 

bY P (t. ho) < 0 (to< tc-9 ho > 0) 

Then the zero solution of (1) is unstable. 
The proof of Theorem 2 which resembles that of Theorem 1, is omitted. 
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The problem of instability of a plane tangential discontinuity which was already consi- 
dered in [l. 21, is solved here in connection with the problem on reflection of plane 
monochromatic waves from a surface of discontinuity. Dependence of the decremental 
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built-up of the perturbation waves on the Mach number and on the angle formed by the 

direction of motion of the perturbation wave and the flow velocity vector is obtained, 

and analyzed for the identical media. 
Coefficient of reflection of the plane monochromatic waves for the surface of the 

tangential discontinuity, i. e. the ratio of the energy flux density components normal to 
the surface in the reflected and incident waves, has the form 

1-z 2 

R= *+.z ’ I I 

PC2 sin26’ 
’ = 7 sin20 PC (1) 

Here primed quantities refer to the medium moving with velocity v and unprimed 
quantities -to the medium at rest. Angle of refraction 6’ (or 6) is related to the angle 
of incidence 0 (or 6’) bv the expression 

where cp is the angle between the velocity vector v and the projection k,, of the wave 

vector k on the plane of tangential discontinuity. Apparently the author of [3] was first 
to obtain the expression (1) correctly. 

For the total reflection when R = 1, the quantity 2 in (1) and the component kl’ 

(or kL) of the wave vector k’ (or k) normal to the surface, are purely imaginary. These 

cases have been studied repeatedly (see e. g. [S]). 
We shall investigate the more interesting cases of the absence of reflection in more 

detail. Condition R = 0 and relations (1) and (2) yield the following algebraic equa- 
tion of the sixth order iri sin6 

(PIP’)’ 
- 1 = p!;: 

P/P’ 
--s& [l--(~/c)sin6]~ -pc2 i 

p’c’2 
[ 1 - (U / c) sin6]* 1 (3) 

Using the relation 
sin6 = k,,/ k = ck,,h (4). 

we can transform (3) into the form similar to that of Eq. (18) of [2] used there as the 
initial equation in determining the unstable oscillations of the surface of a tangential 

discontinuity. 
In general, Eq. (3) has six solutions. In order to achieve a clear picture, it is expedient 

to obtain these solutions in their analytical form. This can be done, provided we assume 

that p2 = p’$ (5) 

The above equation holds, in particular, for the perfect gases with the same ratio of 
the specific heats y = Cp/Cr,. When the condition (5) holds, Eq. (3) clearly splits into 

two separ? te equations 
c’2 / c2 

-l=O, 
d2 / c2 

[I -(U/C) sine]2 [I - (u/c) sin6]2 -&+i=o (6) 

of the second and fourth degree in sin0 , respectively. 
We begin by investigating the solutions 

sin6 = (c * c’) / u (7) 

of the first equation of (6). Analyzing these solutions we find that they have a physical 
meaning, i.e. the waves are bounded at infinity only for u > ult2 = Ic -I: c’.] 

Inserting the solutions (7) into the refraction equation (2) we find that sine = sin6 , 
consequently solutions (7) correspond to the waves which pass through the tangential 
discontinuity from one medium to the other without reflection (R - 0) or refraction 
(6’ = 6). In the case of identical media (p’ = p, c’= c) there exists only one such wave 



On the instability of a plane tangential discontinuity 569 

for u > ur =2c ; the other wave degenerates (O 4 c=). 
Waves with normal incidence on the surface of the tangential discontinuity represent 

a particular case 
z+ ) “=(;;;;,Z,‘) 

If the media are identical, R = 0 for any u. 
We now turn our attention to solutions of the second equation of (6). Tinese are rela- 

tively simple when the media are identical 

2/sin0=u/c*t(u/c)2+4+.4 I/(nlc)2 +i (8) 

2/sin0=u/e~~(u/c)2+4-4 ~/(ulC)‘+i (9) 

We can easily see that solutions (8) are real for any u, while solutions (9) are real only 
for u >,uO = 2 fit. In both cases I sin6 1 < 1. Real solutions correspond to the waves 
which pass from one medium to the other through the tangential discontinuity without 
reflection (R = 0), but are refracted (6’ +6) . 

For u < u. solutions (9) for sin6 are complex. From the relation (4) it follows that 

when k,, is real, w are complex. Consequently for u < u. solutions (9) correspond to the 
waves one of which increases with time , while the other (whose frequency is the com- 
plex conjugate of the first one) decays. Existence of the first wave ascertains the insta- 
bility of the tangential discontinuity. Components kL’ and kl of the wave vector of 
this wave are also complex and kl’ = kl*. Consequently these waves are of the gene- 

ralized-surface-wave type (this term is borrowed from the theory of the Rayleigh’s waves 
in a solid). 

Let us now see under which conditions the instability will be maximum. Using the 
condition dImo / du = 0 we can easily find u = U, at which the perturbation wave 
growth decrement reaches its maximum value. Using (9) we find +, = m and we 

also obtain Imo = ck ,, / 2. Thus, the maximum wave growth decrement is inversely pro- 
portional to the wavelength h ,, . 

Now from (2) we have u = vcos~. Then for the given velocity v < U, the wave 

with 9 = 0, i.e. the wave with k ,, directed along v , will exhibit maximum instability. 

If 2) > u,, the most unstable will be the wave with ‘p = cp,,,=arccos (urn/v) and the magnitude 

of the maximum instability will be the same for any v > u, . When v > u. , the pertur- 

bation wave will become stable for certain values of cp 123, satisfying the inequality 

0 < 9 < v. where cpO = arc cos (udv) and v. will increase with increasing velocity of 
flow. 

The analysis of the more general case for different media with the assumption (5) 
omitted is substantially more difficult ; nevertheless, the principles noted remain quali- 

tatively valid and only numerical values, particularly in uo, urn, ‘PO and (P,,,, will be sub- 
jected to changes. 
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